Integrated Modelling Tool to Evaluate the Transport, Energy and Environmental-related Performance of Low-Carbon Mobility Actions

Anastasia Poupkou, Serafeim Kontos
Aristotle University of Thessaloniki

Francesca Liguori, Massimo Bressan
Regional Agency for Environment Protection in Veneto Region
Challenges of REMEDIO

The way (road) we were

The every day traffic jam

The vision we have
In the general approach of REMEDIO, IMT plays a fundamental role in the decision support system.
Integrated Modelling Tool

✓ Customized modelling tool to evaluate at local street level the environmental-related performance of low-carbon mobility actions.

✓ IMT integrates the following modules for the estimation of traffic related impacts:

- Pollutant emissions
- Carbon footprint
- Atmospheric dispersion
- Energy consumption
- Noise
- Health events and related Costs.

Access through the link http://130.206.115.232:3001/
IMT Modules

- Traffic Simulation ✓
- Pollutant Emissions Module ✓
- Carbon Footprint Module ✓
- Energy Consumption Module ✓
- Air Dispersion Module ✓
- Traffic Noise Module ✓

SUMO – Simulation of Urban MObility

VADIS Model

- Wind Flow Module (FLOW)
- Dispersion Module (DISPER)

Pollutants Concentrations

CNOSSOS-EU Methodology

- Health / Cost Module (Statistical Modelling)
Conceptual Modelling Approach

Step 1: Zone Definition
- Traffic data requirements
 - Vehicle technologies (fleet)
 - Traffic flow characterization
 - Vehicle loading
- Road data requirements
 - Road Definition
 - Number of trams
 - Especial lanes
 - Gradient
 - Curvature
 - Building/spaces identification

Step 2: Traffic Definition
- For each tram

Step 3: Model Simulation
- Model in "C"
- Calling SUMO+PHEMlight
- Energy model
- Noise model CNOSSOS-EU

Step 4: Analysis of Results
- Total fleet fuel consumption
- Consumption by vehicle type
- Consumption in public transport
- Total CO2 emissions traffic
- Houses exposed to Lden>65db
- Sensible sites exposed to Lden>65 db.

Step 5: Modifications
- Include one traffic light in the position X
- Increase the bus frequency
- Change tram to pedestrian
- Include bicycle lane

Steps 1 and 2:
- Road description, Traffic data, Buildings dimensions, Meteorology, Air quality data

Steps 3 and 4:
- Application of modules
- Raw data, Graphs, Maps
- Data analysis

Step 5:
- Traffic scenarios building
IMT Application Exercise

Aim of the First Part of the Hands-on Exercise:

Get acquainted with:

➢ the **User Interface**
➢ the **Data Input Process**.

Aim of the Second Part of the Hands-on Exercise:

➢ Understand better the **Application of Modules**
➢ Understand better the **Output Results**
➢ Consider the **IMT Capitalization Perspectives**.
Let’s Start!
Did you Run IMT Modules?

Excellent!
IMT Modules Results:

Exercise Summary
- Fuel Consumption per vehicle type for the whole road axis

- Total Fuel Consumption per edge (i.e. road segment)
Noise Module

- **Total Noise emissions (absolute and normalized*) per edge**
 - ROAD TRAFFIC NOISE
 - NORMALIZED TRAFFIC NOISE

- **Vehicle-type Noise emissions per edge**

Normalized emissions referred to noise values per 100 meters of road length
Emissions Module (including Carbon Footprint)

- **Plots ➔ Graphs and Maps** for:

 - **Pollutants**: CO, NOx, HC, PM$_x$ and carbon footprint (CO$_2$)

 - **Vehicle Type**: Car, Moto, Trailer, Truck, Bus, Delivery (LCV), Coach or all vehicle types (i.e. Total)

 - **Type of Data**: Absolute or Normalized (per km) emissions

 - **Temporal Analysis**: Hourly or Daily

 - **Spatial Analysis**: Per edge or the whole road axis.
CO₂ emissions from Passenger Cars

Spatially Distributed Emissions

Total CO₂ emissions
(all vehicle types)
Emissions per Vehicle Type and Category

CO₂ emissions per vehicle type in the whole road axis

CO₂ emissions per vehicle category (EURO standards, fuel) in the whole road axis
IMT Additional Results:

Dispersion Module
- Air pollutant concentrations (CO, NOx, HC, PM$_x$)
- CO$_2$ concentrations
IMT Soft Actions:

Mobility Scenarios Building
8 Different Soft Actions to be Selected

- Action 1: Add a bus lane
- Action 2: Add one or more bus lines
- Action 3: Add a bike lane
- Action 4: Changes about traffic light
- Action 5: Remove/add a road lane
- Action 6: Change vehicle type distribution
- Action 7: Change a traffic pattern
- Action 8: Freight Module
Example: Add a Road Lane (Action 5)

- In the first step no changes are needed (as in the Base Case)
Example: Add a Road Lane (Action 5)

- In the second step, increase the number of car lanes to 4
Example: Add a Road Lane (Action 5)

- Step 3 : Insert the same traffic data as for the Base Case
Example: Add a Road Lane (Action 5)

Results for the Emissions Module

BEFORE: Base Case

AFTER: Increased Road Lanes (from 3 to 4)
Questions?

Follow and Join:

/remediomed
remedio.interreg-med.eu/
remedio-med@ctn.tecnico.ulisboa.pt

Ricardo Chacartegu
ricardoch@us.es

Anastasia Poupkou
poupkou@auth.gr

Francesca Liguori
francesca.liguori@arpa.veneto.it

Susana Marta Almeida
smarta@ctn.ist.utl.pt